
tugraz
Institute of Software Technology

Killing Bugs in a Black Box with
Model-based Mutation Testing

Bernhard K. Aichernig

Institute of Software Technology
Graz University of Technology, Austria

MTCPS Workshop
Vienna, 11 Apr 2016

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
1 / 64

tugraz
Institute of Software Technology

Acknowledgements

Joint work with

J. Auer · H. Brandl · W. Herzner · E. Jöbstl · W. Krenn · R. Korosec ·
F. Lorber · D. Nickovic · A. Rosenmann · R. Schlick · B.V. Schmidt ·

M. Tappler · S. Tiran

Strong Collaboration:
Since 2008 with AIT
Since 2011 with AVL

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
2 / 64

tugraz
Institute of Software Technology

Projects

Past:
I CREDO: FP6, MBT of distributed systems
I MOGENTES: FP7, MBT of embedded systems, mutation testing,

qualitative reasoning for testing hybrid systems
I TRUFAL: national, scalability of test-case generators via symbolic

analysis
I MBAT: FP7, integration of methods and tools, MBT +

consistency checking

Ongoing:
I CRYSTAL: FP7, integration of tools, MBT + requirements

engineering
I TRUCONF: national, MBT + non-functional requirements +

systems of systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
3 / 64

tugraz
Institute of Software Technology

Agenda

I Model-based Mutation Testing
I Real-Time Systems
I Hybrid Systems
I Discrete Systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
4 / 64

tugraz
Institute of Software Technology

Mutation Testing I

Step 1: Create mutants

Mutation Process

Source Code Mutant

Mutation Operator

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
5 / 64

tugraz
Institute of Software Technology

Mutation Testing II
Step 2: Try to kill mutants

A test case kills a mutant if its
run shows different behaviour.

Quality of tests:
How many mutants survived? [Lipton71, Hamlet77, DeMillo et al.78]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
6 / 64

tugraz
Institute of Software Technology

Objective

Don’t write test cases,

generate them!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
7 / 64

tugraz
Institute of Software Technology

Objective

Don’t write test cases,

generate them!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
7 / 64

tugraz
Institute of Software Technology

Timed Automata Model of a Car Alarm System

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!
close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

unlock?

unlock?

unlock? (mutation)

lock?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e == 30
soundOff!

e == 300
soundOff!

flashOff!

unlock?
close?

wait

close?
f := 0

armedOn!

I Car alarm system model

I and a mutation representing a
fault

I leading to non-conformance
representing an observable
failure

I resulting in a test case
triggering this fault

I and propagating it to a visible
failure

What is a failure?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
8 / 64

tugraz
Institute of Software Technology

Timed Automata Model of a Car Alarm System

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!
close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

unlock?

unlock?

unlock? (mutation)

lock?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e == 30
soundOff!

e == 300
soundOff!

flashOff!

unlock?
close?

wait

close?
f := 0

armedOn!

I Car alarm system model

I and a mutation representing a
fault

I leading to non-conformance
representing an observable
failure

I resulting in a test case
triggering this fault

I and propagating it to a visible
failure

What is a failure?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
8 / 64

tugraz
Institute of Software Technology

Timed Automata Model of a Car Alarm System

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!
close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

unlock?

unlock?

unlock? (mutation)

lock?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e == 30
soundOff!

e == 300
soundOff!

flashOff!

unlock?

close?

wait

close?
f := 0

armedOn!

I Car alarm system model

I and a mutation representing a
fault

I leading to non-conformance
representing an observable
failure

I resulting in a test case
triggering this fault

I and propagating it to a visible
failure

What is a failure?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
8 / 64

tugraz
Institute of Software Technology

Timed Automata Model of a Car Alarm System

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!
close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

unlock?

unlock?

unlock? (mutation)

lock?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e == 30
soundOff!

e == 300
soundOff!

flashOff!

unlock?
close?

wait

close?
f := 0

armedOn!

I Car alarm system model

I and a mutation representing a
fault

I leading to non-conformance
representing an observable
failure

I resulting in a test case
triggering this fault

I and propagating it to a visible
failure

What is a failure?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
8 / 64

tugraz
Institute of Software Technology

Timed Automata Model of a Car Alarm System

start

q1

q2

q3

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

close?

open?

lock?

unlock?

unlock?

lock?
c := 0

open?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!
close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

unlock?

unlock?

unlock? (mutation)

lock?

close?
c := 0

c == 20
armedOn!

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

e == 30
soundOff!

e == 300
soundOff!

flashOff!

unlock?
close?

wait

close?
f := 0

armedOn!

I Car alarm system model

I and a mutation representing a
fault

I leading to non-conformance
representing an observable
failure

I resulting in a test case
triggering this fault

I and propagating it to a visible
failure

What is a failure?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
8 / 64

tugraz
Institute of Software Technology

Fault-Propagation in Models
Abstract 5-place buffer model:

Counter variable n is internal!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
9 / 64

tugraz
Institute of Software Technology

Fault-Propagation in Models
Let’s inject a fault:

How does this fault propagate?

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
10 / 64

tugraz
Institute of Software Technology

A Good Test Case
... triggers this fault and propagates it to a (visible) failure:

〈!setEmptyOn, ?Enqueue, !setEmptyOff, ?Enqueue, ?Enqueue, ?Enqueue,
?Enqueue, !setFullOn, ?Dequeue, !setFullOff, ?Enqueue, !setFullOn〉

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
11 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver pass / fail

then passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / fail

then pass

then pass/failthen fail

if conforms

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Testing

Model

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen pass

then pass/fail

then fail

if ¬conforms

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Mutation Testing

Model Mutation
Tool

Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Mutation Testing

Model Mutation
Tool Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/failthen fail

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Mutation Testing

Model Mutation
Tool Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen pass

then pass/fail

then fail

if ¬conforms

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Mutation Testing

Model Mutation
Tool Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/fail

then fail

if ¬conforms

if conforms

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

Model-Based Mutation Testing

Model Mutation
Tool Model Mutant

Test Case Generator

Test Case Generator:
Conformance Checker

Abstract Test Case

SUT Test Driver

pass / failthen passthen pass/fail

then fail

if ¬conforms

if conforms

then ¬ conforms

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
12 / 64

tugraz
Institute of Software Technology

MoMuT Tools

MoMuT

I is a family of tools implementing Model-based Mutation Testing.

I is jointly developed and maintained by AIT and TU Graz

I supports different modelling styles:

I MoMuT::UML (UML state machines)
I MoMuT::OOAS (OO Action Systems)
I MoMuT::QAS (Qualitative Action Systems)
I MoMuT::TA (Timed Automata)
I MoMuT::TAS (Timed Action Systems)
I MoMuT::REQs (Synchronous Requirement Interfaces)

www.momut.org

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
13 / 64

http://www.momut.org/

tugraz
Institute of Software Technology

Agenda

I Model-based Mutation Testing
I Real-Time Systems
I Hybrid Systems
I Discrete Systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
14 / 64

tugraz
Institute of Software Technology

Conformance Relation of Timed Systems

... defines in a testing theory what constitutes a failure.

Definition (Timed input-output conformance – tioco [Krichen&Tripakis09])

Given a timed automaton Model and a Mutant with inputs and outputs

Mutant tiocoModel iff

∀σ ∈ L(Model) : out(Mutant after σ) ⊆ out(Model after σ)

S ... set of all states
s0 ... initial state
σ ... timed trace of labels
ΣO ... output labels

A afterσ = {s ∈ S | s0
σ−→ s}

elapse(s) = {t > 0 | s t−→}
out(s) = {a ∈ ΣO | s

a−→} ∪ elapse(s)
out(S) =

⋃
s∈S out(s)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
15 / 64

tugraz
Institute of Software Technology

tioco and Language Inclusion

Theorem ([Krichen&Tripakis09])

L(Mutant) ⊆ L(Model)⇒ Mutant tioco Model

Theorem ([Krichen&Tripakis09])

If Model is input-enabled, then

Mutant tioco Model ⇒ L(Mutant) ⊆ L(Model)

start

...

x! a?

b?

a?
c < 2

ΣI ∪ ΣO

a?
c ≥ 2

b?

Demonic completion for
deterministic TA

For deterministic TA,
reduce tioco check to language inclusion check (PSPACE-complete).

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
16 / 64

tugraz
Institute of Software Technology

k-Bounded Language Inclusion

I Construct a formula ϕk
AI ,AS

that is satisfiable if L(AI) 6⊆ L(AS)

I providing a timed trace as witness

ϕk
AI ,AS

≡∧k
i=1(d i ≥ 0 ∧ 1 ≤ αi ≤ |Σ|) ∧ i ≥ 1 ∧ i ≤ k ∧ (delays and actions)

1 ≤ i ≤ k ∧ (in i steps)
initAI (XI ,CI) ∧ path1,i−1

AI
(A,D,XI ,CI) ∧ (reach in mutant)

initAS (XS ,CS) ∧ path1,i−1
AS

(A,D,XS ,CS) ∧ (reach in model)
pathi,i

AI
(A,D,XI ,CI) ∧ ¬pathi,i

AS
(A,D,XS ,CS) (failure)

Variable sets:
x i ∈ X ... location at step i
αi ∈ A ... i th discrete action
d i ∈ D ... i th time delay
{c i , c∗,i} ⊆ C ... clock valuation after i th time and discrete step

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
17 / 64

tugraz
Institute of Software Technology

Experimental Results I

I Bounded language inclusion check for deterministic Uppaal TA
I Implemented in Scala calling SMT solver Z3
I Car alarm system characteristics: deterministic,

I 5 clock variables, 16 locations, 25 transitions.

I 8 mutation operators → 1,320 mutants
I Overall runtime: 30 minutes (k = 12)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s

Runtime details

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
18 / 64

tugraz
Institute of Software Technology

Experimental Results I

I Bounded language inclusion check for deterministic Uppaal TA
I Implemented in Scala calling SMT solver Z3
I Car alarm system characteristics: deterministic,

I 5 clock variables, 16 locations, 25 transitions.

I 8 mutation operators → 1,320 mutants
I Overall runtime: 30 minutes (k = 12)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s

Runtime details

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
18 / 64

tugraz
Institute of Software Technology

Timed Action Systems

1 types{
2 State = [... | Flash | FlashSound | Silent | SwitchOffAlarm | ...]; }
3 state{
4 loc : State ; }
5 clocks [Real]{ c;d;e; f ;g }
6 init {
7 loc := OpenAndUnlocked;}
8 invariant {
9 if loc == Flash then e <= 0;

10 if loc == FlashSound then e <= 30;
11 if loc == Silent then e <= 300;
12 ... }
13 actions{
14 !soundOn#1() if loc == Flash && e == 0 then { loc := FlashSound; };
15

16 !soundOff#1() if loc == FlashSound && e == 30 then { loc := Silent ; };
17

18 ?unlock#6() resets g if loc == FlashSound && e < 30 then { loc := SwitchOffAlarm; };
19 ... }

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
19 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc ∧ Flash = Flash
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc ∧(((((Flash = Flash
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧ Flash = Flash →
↼Ð
d + d ≤ 30 ∧ . . .

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
20 / 64

tugraz
Institute of Software Technology

Symbolic Execution of Timed Action Systems

s0 pc = ↼Ðpc
path conditions . . . blue
symbolic (clock) states . . . redqc = {e 7→

↼Ð
d , . . .}

s1

!soundOn

pc = ↼Ðpc
q = {loc 7→ FlashSound, . . .}

s2

delay(d)

pc = ↼Ðpc ∧
↼Ð
d + d ≤ 30

qc = {e 7→
↼Ð
d + d, . . .}

s3 s4

?unlock !soundOff

delay(d ′) delay(d ′)

pc = ↼Ðpc ∧
↼Ð
d + d < 30 pc = ↼Ðpc ∧

↼Ð
d + d = 30

qc = {g 7→ 0}
q = {loc 7→ SwitchOffAlarm}

q = {loc 7→ Silent}

Provides all symbolic timed traces through model!
B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

tugraz
Institute of Software Technology

Conformance Checking via Symbolic Execution
I Bounded implicit product graph exploration
I Simultaneous symbolic execution of all model traces
I Non-conformance checks (stioco) of the form:

∃qfail ∈ ModelStates︸ ︷︷ ︸
all symbolic states after current trace

,∃λ ∈ Observations :

pcqfail︸ ︷︷ ︸
state reachable (model)

∧

(∨
s ∈MutantStates

pcs ∧ guardsλ[states]

)
︸ ︷︷ ︸

observation possible (mutant)

∧

¬

 ∨
q ∈ModelStates

pcq ∧ guardsλ[stateq]

︸ ︷︷ ︸

observation not possible (model)

pcq . . . path condition of symbolic state q

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
21 / 64

tugraz
Institute of Software Technology

Conformance Checking via Symbolic Execution
I Bounded implicit product graph exploration
I Simultaneous symbolic execution of all model traces
I Non-conformance checks (stioco) of the form:

∃qfail ∈ ModelStates︸ ︷︷ ︸
all symbolic states after current trace

,∃λ ∈ Observations :

pcqfail︸ ︷︷ ︸
state reachable (model)

∧

(∨
s ∈MutantStates

pcs ∧ guardsλ[states]

)
︸ ︷︷ ︸

observation possible (mutant)

∧

¬

 ∨
q ∈ModelStates

pcq ∧ guardsλ[stateq]

︸ ︷︷ ︸

observation not possible (model)

pcq . . . path condition of symbolic state q

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
21 / 64

tugraz
Institute of Software Technology

Conformance Checking via Symbolic Execution
I Bounded implicit product graph exploration
I Simultaneous symbolic execution of all model traces
I Non-conformance checks (stioco) of the form:

∃qfail ∈ ModelStates︸ ︷︷ ︸
all symbolic states after current trace

,∃λ ∈ Observations :

pcqfail︸ ︷︷ ︸
state reachable (model)

∧

(∨
s ∈MutantStates

pcs ∧ guardsλ[states]

)
︸ ︷︷ ︸

observation possible (mutant)

∧

¬

 ∨
q ∈ModelStates

pcq ∧ guardsλ[stateq]

︸ ︷︷ ︸

observation not possible (model)

pcq . . . path condition of symbolic state q

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
21 / 64

tugraz
Institute of Software Technology

Experimental Results II

I Symbolic execution tioco check for deterministic Timed Action
Systems

I Implemented in Scala calling SMT solver Z3
I Car alarm system characteristics: deterministic,

I 5 clock variables, 16 locations, 25 transitions.

I 8 mutation operators → 986 mutants
I Overall runtime: 27.5 minutes (k = 12)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s 1.7s 0.02s 38.83s ∼ 0s

Runtime details

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
22 / 64

tugraz
Institute of Software Technology

Experimental Results II

I Symbolic execution tioco check for deterministic Timed Action
Systems

I Implemented in Scala calling SMT solver Z3
I Car alarm system characteristics: deterministic,

I 5 clock variables, 16 locations, 25 transitions.

I 8 mutation operators → 986 mutants
I Overall runtime: 27.5 minutes (k = 12)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

12 1.4s 1.1s 33s 0.07s 1.7s 0.02s 38.83s ∼ 0s

Runtime details

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
22 / 64

tugraz
Institute of Software Technology

Experimental Results III

I Symbolic tioco checker also for
non-deterministic models

I Car Alarm System: silent transition
with non-deterministic delay

I Plus underspecification in switching
on alarm

I 3 equivalent mutants timed out after
10min

Depth Symbolic Execution
Mean Median Max Min

12 0.79s 0.06s 360.84s ∼ 0s

... and the bounded model checking?

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

unlock?

close?
c := 0

close?

c == 20
armedOn!

lock?
c := 0

open?

open? unlock?

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
23 / 64

tugraz
Institute of Software Technology

Experimental Results III

I Symbolic tioco checker also for
non-deterministic models

I Car Alarm System: silent transition
with non-deterministic delay

I Plus underspecification in switching
on alarm

I 3 equivalent mutants timed out after
10min

Depth Symbolic Execution
Mean Median Max Min

12 0.79s 0.06s 360.84s ∼ 0s

... and the bounded model checking?

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

unlock?

close?
c := 0

close?

c == 20
armedOn!

lock?
c := 0

open?

open? unlock?

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
23 / 64

tugraz
Institute of Software Technology

Experimental Results III

I Symbolic tioco checker also for
non-deterministic models

I Car Alarm System: silent transition
with non-deterministic delay

I Plus underspecification in switching
on alarm

I 3 equivalent mutants timed out after
10min

Depth Symbolic Execution
Mean Median Max Min

12 0.79s 0.06s 360.84s ∼ 0s

... and the bounded model checking?
start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

unlock?

close?
c := 0

close?

c == 20
armedOn!

lock?
c := 0

open?

open? unlock?

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
23 / 64

tugraz
Institute of Software Technology

Bounded Determinisation of Timed Automata

q0

start

q1

q4

q2

q3

HEATING

IDLE

EMPTY

GRAINING

BREWING

coin
{x}

beep
x = 2

beep
0 < x < 3

ε
1 < x < 2

{x}

refund
x < 4

coffee
x = 1

q0start

q1

q4q2

q3 q5

q6

coin
{x1}

beep
x1 = 2
{x2}

beep
0 < x1 < 3

{x2}

ε
1 < x1 < 2

{x2,0}

refund
x1 < 4
{x3}

coffee
x2,0 = 1
{x3}

q0start

q1

q¬acc

q5q6

coin
{x1}

beep
(0 < x1 < 3∧

x1 < 2) ∨
x1 = 2 ∨

0 < x1 < 3
{x2}

refund
x1 < 4∧
x1 − x2 = 2
{x3}

coffee
2 < x1 < 3∧

1 < x1∧
0 < x1 − x2 < 3∧

x1 − x2 < 2
{x3}

q0start

q1

q4q3

q5q6

coin
{x1} beep

x1 = 2
{x2}

beep
0 < x1 < 3
∧ x1 < 2
{x2}

refund
x1 < 4
{x3}

coffee
2 < x1 < 3
∧ 1 < x1
{x3}

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
24 / 64

tugraz
Institute of Software Technology

Bounded Determinisation of Timed Automata

q0

start

q1

q4

q2

q3

HEATING

IDLE

EMPTY

GRAINING

BREWING

coin
{x}

beep
x = 2

beep
0 < x < 3

ε
1 < x < 2

{x}

refund
x < 4

coffee
x = 1

q0start

q1

q4q2

q3 q5

q6

coin
{x1}

beep
x1 = 2
{x2}

beep
0 < x1 < 3

{x2}

ε
1 < x1 < 2

{x2,0}

refund
x1 < 4
{x3}

coffee
x2,0 = 1
{x3}

q0start

q1

q¬acc

q5q6

coin
{x1}

beep
(0 < x1 < 3∧

x1 < 2) ∨
x1 = 2 ∨

0 < x1 < 3
{x2}

refund
x1 < 4∧
x1 − x2 = 2
{x3}

coffee
2 < x1 < 3∧

1 < x1∧
0 < x1 − x2 < 3∧

x1 − x2 < 2
{x3}

q0start

q1

q4q3

q5q6

coin
{x1} beep

x1 = 2
{x2}

beep
0 < x1 < 3
∧ x1 < 2
{x2}

refund
x1 < 4
{x3}

coffee
2 < x1 < 3
∧ 1 < x1
{x3}

unfolding

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
24 / 64

tugraz
Institute of Software Technology

Bounded Determinisation of Timed Automata

q0

start

q1

q4

q2

q3

HEATING

IDLE

EMPTY

GRAINING

BREWING

coin
{x}

beep
x = 2

beep
0 < x < 3

ε
1 < x < 2

{x}

refund
x < 4

coffee
x = 1

q0start

q1

q4q2

q3 q5

q6

coin
{x1}

beep
x1 = 2
{x2}

beep
0 < x1 < 3

{x2}

ε
1 < x1 < 2

{x2,0}

refund
x1 < 4
{x3}

coffee
x2,0 = 1
{x3}

q0start

q1

q¬acc

q5q6

coin
{x1}

beep
(0 < x1 < 3∧

x1 < 2) ∨
x1 = 2 ∨

0 < x1 < 3
{x2}

refund
x1 < 4∧
x1 − x2 = 2
{x3}

coffee
2 < x1 < 3∧

1 < x1∧
0 < x1 − x2 < 3∧

x1 − x2 < 2
{x3}

q0start

q1

q4q3

q5q6

coin
{x1} beep

x1 = 2
{x2}

beep
0 < x1 < 3
∧ x1 < 2
{x2}

refund
x1 < 4
{x3}

coffee
2 < x1 < 3
∧ 1 < x1
{x3}

unfolding

ε-removal

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
24 / 64

tugraz
Institute of Software Technology

Bounded Determinisation of Timed Automata

q0

start

q1

q4

q2

q3

HEATING

IDLE

EMPTY

GRAINING

BREWING

coin
{x}

beep
x = 2

beep
0 < x < 3

ε
1 < x < 2

{x}

refund
x < 4

coffee
x = 1

q0start

q1

q4q2

q3 q5

q6

coin
{x1}

beep
x1 = 2
{x2}

beep
0 < x1 < 3

{x2}

ε
1 < x1 < 2

{x2,0}

refund
x1 < 4
{x3}

coffee
x2,0 = 1
{x3}

q0start

q1

q¬acc

q5q6

coin
{x1}

beep
(0 < x1 < 3∧

x1 < 2) ∨
x1 = 2 ∨

0 < x1 < 3
{x2}

refund
x1 < 4∧
x1 − x2 = 2
{x3}

coffee
2 < x1 < 3∧

1 < x1∧
0 < x1 − x2 < 3∧

x1 − x2 < 2
{x3}

q0start

q1

q4q3

q5q6

coin
{x1} beep

x1 = 2
{x2}

beep
0 < x1 < 3
∧ x1 < 2
{x2}

refund
x1 < 4
{x3}

coffee
2 < x1 < 3
∧ 1 < x1
{x3}

unfolding

ε-removal

determinisation

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
24 / 64

tugraz
Institute of Software Technology

Experimental Results IV
I Bounded determinization

→ 13,545 locations (depth 12)

→ bounded model check fails

I Partial models!

start

lock?

unlock?

close?

open?

open?
close?
{c}

unlock?
lock?
{c})

open? unlock?

c = 20
armedOn!

0 < c < 2
ε

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

close?
c := 0

c == 20
armedOn!

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

Model D. Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ∼ 0s
Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ∼ 0s
Complete 12 x x x x 0.79s 0.06s 360.84s ∼ 0s

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
25 / 64

tugraz
Institute of Software Technology

Experimental Results IV
I Bounded determinization

→ 13,545 locations (depth 12)

→ bounded model check fails

I Partial models!

start

lock?

unlock?

close?

open?

open?
close?
{c}

unlock?
lock?
{c})

open? unlock?

c = 20
armedOn!

0 < c < 2
ε

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

close?
c := 0

c == 20
armedOn!

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

Model D. Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ∼ 0s
Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ∼ 0s
Complete 12 x x x x 0.79s 0.06s 360.84s ∼ 0s

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
25 / 64

tugraz
Institute of Software Technology

Experimental Results IV
I Bounded determinization

→ 13,545 locations (depth 12)

→ bounded model check fails

I Partial models!

start

lock?

unlock?

close?

open?

open?
close?
{c}

unlock?
lock?
{c})

open? unlock?

c = 20
armedOn!

0 < c < 2
ε

start

flashOff!

c ≤ 20

e ≤ 0

e ≤ 0

e ≤ 0 e ≤ 0

e ≤ 30

e ≤ 300g ≤ 0

g ≤ 0 d ≤ 0 f ≤ 0 e ≤ 300

lock?

close?
c := 0

c == 20
armedOn!

0 < c < 2
ε

open?
e := 0

e == 0
armedOff!

flashOn!

soundOn!

soundOn!

flashOn!

e < 30
unlock?
g := 0

e == 30
soundOff!

unlock?
g := 0

e == 300
soundOff!

flashOff!

unlock?

close?
f := 0

armedOn!

soundOff!

unlock?
d := 0

armedOff!

Model D. Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ∼ 0s
Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ∼ 0s
Complete 12 x x x x 0.79s 0.06s 360.84s ∼ 0s

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
25 / 64

tugraz
Institute of Software Technology

Experimental Results V

I Adding data variable and parameters to
I deterministic Car Alarm System with one clock
I 3-digit PIN code for unlocking

I No negative effects, even with higher digit PIN codes
I Symbolic execution faster with 1 clock (0.24s) than with 5 clocks

(1.7s)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

8 1.46s 0.28s 59.41s 0.12s 0.07s 0.05s 0.82s ∼ 0s
12 4.12s 0.35s 35.41s 0.13s 0.24s 0.05s 3.67s ∼ 0s

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
26 / 64

tugraz
Institute of Software Technology

Experimental Results V

I Adding data variable and parameters to
I deterministic Car Alarm System with one clock
I 3-digit PIN code for unlocking

I No negative effects, even with higher digit PIN codes
I Symbolic execution faster with 1 clock (0.24s) than with 5 clocks

(1.7s)

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min

8 1.46s 0.28s 59.41s 0.12s 0.07s 0.05s 0.82s ∼ 0s
12 4.12s 0.35s 35.41s 0.13s 0.24s 0.05s 3.67s ∼ 0s

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
26 / 64

tugraz
Institute of Software Technology

Real-Time Systems Summary

Symbolic execution (SE) seems to perform better, but no clear winner!

I Number of clocks:
I BMC: small impact (was faster in deterministic case)
I SE: high impact

I Non-determinism: is an obstacle for conformance checking
I BMC: state-space explosion → partial models
I SE: lowered performance (40s vs. 6min) → 3 mutants timed out

I Statistical outliers: due to equivalent mutants
I BMC: runtime almost equal
I SE: extreme differences due to optimisations

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
27 / 64

tugraz
Institute of Software Technology

Agenda

I Model-based Mutation Testing
I Real-Time Systems
I Hybrid Systems
I Discrete Systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
28 / 64

tugraz
Institute of Software Technology

A Hybrid System: Two Tank System

Full

Empty

T1

P1 G1

Empty

Reserve
Full

T2

P2G2

in
ou
t

out

in

P1, P2 . . . water pumps

G1, G2 . . . water-level sensors

Requirements:

I P1 starts pumping, if T2 below
Reserve and T1 is full

I until T1 is empty or T2 is full

I P2 is controlled by button
WaterRequest

I runs if there is water in T2.

I Note: T1 may overflow

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
29 / 64

tugraz
Institute of Software Technology

Related Work

I Hybrid Systems
I Hybrid Automata (Alur,Courcoubetis,Henzinger,Ho 93)
I Action Systems [Back,Kurki-Suonio 83]
I Hybrid Action Systems [Rönkkö,Ravn,Sere 03]
I Qualitative Reasoning [Kuipers 94]

I Testing
I Mutation Testing [Hamlet 77, De Millo et al. 78]
I Input-Output Conformance [Brinksma,Tretmans 92]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
30 / 64

tugraz
Institute of Software Technology

Abstraction 1: Action Systems

Modeling the Controller

Controller:

|[var P1_running,P2_running : Bool,
out*, inout* : Real
•
P1_running := false;
P2_running := false;
out := 0; inout := 0;

do
g1 → P1_running := true; inout := (0,Max]
�
g2 → P1_running := false; inout := 0
�
g3 → P2_running := true; out := (0,Max]
�
g4 → P2_running := false; out := 0

od
]| : WaterRequest, x1, x2

Guards:
I g1 =df x2 ≤ Reserve ∧

x1 = Full ∧
¬P1_running

I g2 =df P1_running ∧
(x1 ≤ Empty ∨ x2 = Full)

I g3 =df WaterRequest ∧
¬P2_running ∧
x2 > Reserve

I g4 =df P2_running ∧
(¬WaterRequest∨
x2 = Empty)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
31 / 64

tugraz
Institute of Software Technology

Abstraction 1: Action Systems

Modeling the Controller

Controller:

|[var P1_running,P2_running : Bool,
out*, inout* : Real
•
P1_running := false;
P2_running := false;
out := 0; inout := 0;

do
g1 → P1_running := true; inout := (0,Max]
�
g2 → P1_running := false; inout := 0
�
g3 → P2_running := true; out := (0,Max]
�
g4 → P2_running := false; out := 0

od
]| : WaterRequest, x1, x2

Guards:
I g1 =df x2 ≤ Reserve ∧

x1 = Full ∧
¬P1_running

I g2 =df P1_running ∧
(x1 ≤ Empty ∨ x2 = Full)

I g3 =df WaterRequest ∧
¬P2_running ∧
x2 > Reserve

I g4 =df P2_running ∧
(¬WaterRequest∨
x2 = Empty)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
31 / 64

tugraz
Institute of Software Technology

Why Action Systems?

I Well-suited for embedded systems modeling
I Action view maps naturally to LTS testing theories
I Solid foundation:

I precise semantics
I refinement

I Compositional modeling
I Many extensions available:

I object-orientation
I hybrid systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
32 / 64

tugraz
Institute of Software Technology

Hybrid Action Systems

Environment:

|[var x1*, x2* : Real
•
x1 := 0; x2 := 0

alt
g1 → . . .
�
. . .

with
¬(g1 ∨ . . .) :→ ẋ1 = (in− inout)/A1 ∧ ẋ2 = (inout− out)/A2

]| : inout, out

I Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer Science 290 (2003)
937–973.

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
33 / 64

tugraz
Institute of Software Technology

Abstraction 2: Qualitative Flows

t-abs.f.t

0
1
2

0
1
2

t
zero

med

high

max

g.s t

v-abs.f.t f.t

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
34 / 64

tugraz
Institute of Software Technology

Example Qualitative Flow of Water Tanks

Empty

Full

x1

x2

Zero

Empty

Full

Zero

Empty

Reserve

Full

P1/P2 OFF P1 ON
P2
ON

P1
OFF

x1

x2

t

x1 x2

Empty

Reserve

Full

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
35 / 64

tugraz
Institute of Software Technology

Qualitative Reasoning (QR)

I QR originates from Artificial Intelligence
I Common sense reasoning about physical systems with possibly

incomplete knowledge.
I Ordinary Differential Equations (ODE)
→ Qualitative Differential Equations (QDE):

ẋ1 = (in− inout)/A1 → d/dt(x1, diff1) ∧ add(diff1, inout, in)
I Arithmetic is reduced to sign algebra:

5− 1 = 4 → [+] + [−] = [+] | [−]
−3 ∗ 2 = −6 → [−] ∗ [+] = [−]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
36 / 64

tugraz
Institute of Software Technology

Qualitative Action Systems

|[var x1*, x2* : Real
•
x1 := 0; x2 := 0

alt
g1 → . . .
�
. . .

with
¬(g1 ∨ . . .) :→
d/dt(x1, diff1) ∧ d/dt(x2, diff2) ∧
add(diff2, out, inout) ∧ add(diff1, inout, in)

]| : inout, out

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
37 / 64

tugraz
Institute of Software Technology

Qualitative Simulation

I Implementations:
I QSIM (Lisp)
I Garp3 (SWI-Prolog)
I ASIM (GNU-Prolog)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
38 / 64

tugraz
Institute of Software Technology

Model-based Mutation Testing

Action System Model

Mutants

IOLTSS

IOLTSM

for every
mutant

ioco?

discriminating test
case

ioco . . . input-output conformance

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
39 / 64

tugraz
Institute of Software Technology

Model-based Mutation Testing

Action System Model

Mutants

IOLTSS

IOLTSM

for every
mutant

ioco?

discriminating test
case

ioco . . . input-output conformance

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
39 / 64

tugraz
Institute of Software Technology

Model-based Mutation Testing

Action System Model

Mutants

IOLTSS

IOLTSM

for every
mutant

ioco?

discriminating test
case

ioco . . . input-output conformance

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
39 / 64

tugraz
Institute of Software Technology

Model-based Mutation Testing

Action System Model

Mutants

IOLTSS

IOLTSM

for every
mutant

ioco?

discriminating test
case

ioco . . . input-output conformance

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
39 / 64

tugraz
Institute of Software Technology

Conformance Checking
I Event-view: labeled actions
I Input and Output Labels

Def. IOCO [Tretmans 96]

∀σ ∈ Straces(Model) : out(Mutant afterσ) ⊆ out(Model afterσ)

out ... outputs labels + quiescence
after ... reachable states after trace

I ioco supports: partial, non-deterministic models
I ioco-checker Ulysses

I implemented in GNU Prolog
I explores discrete actions + qualitative flows
I builds synchronous product modulo ioco
I highly non-deterministic → on-the-fly determinization

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
40 / 64

tugraz
Institute of Software Technology

Conformance Checking
I Event-view: labeled actions
I Input and Output Labels

Def. IOCO [Tretmans 96]

∀σ ∈ Straces(Model) : out(Mutant afterσ) ⊆ out(Model afterσ)

out ... outputs labels + quiescence
after ... reachable states after trace

I ioco supports: partial, non-deterministic models
I ioco-checker Ulysses

I implemented in GNU Prolog
I explores discrete actions + qualitative flows
I builds synchronous product modulo ioco
I highly non-deterministic → on-the-fly determinization

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
40 / 64

tugraz
Institute of Software Technology

Generating a Testcase: Original Model

System =
|[var x1 : T1, x2 : T2, out, inout : FR,

diff1, diff2 : NZP,
p1_running, p2_running,wr : Bool

• x1 := (0, 0); x2 := (0, 0);
out := (0, 0); inout := (0, 0);wr := false
p1_running := false; p2_running := false

alt obs pump1_on : g1 → p1_running := true;
inout := (0..Max, 0)

� obs pump1_off : g2 → p1_running := false;
inout := (0, 0)

� obs pump2_on : g3 → p2_running := true;
out := (0..Max, 0)

� obs pump2_off : g4 → p2_running := false;
out := (0, 0)

� ctr water_req(X) : g5 → wr := X
with ¬(g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5) :⇁

add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2)

]| : in

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
41 / 64

tugraz
Institute of Software Technology

Generating a Testcase II: Mutated Model

System =
|[var x1 : T1, x2 : T2, out, inout : FR,

diff1, diff2 : NZP,
p1_running, p2_running,wr : Bool

• x1 := (0, 0); x2 := (0, 0);
out := (0, 0); inout := (0, 0);wr := false
p1_running := false; p2_running := false

alt obs pump1_on : g1 → p1_running := true;
inout := (0..Max, 0)

� obs pump1_off : g2 → p1_running := true;
inout := (0, 0)

� obs pump2_on : g3 → p2_running := true;
out := (0..Max, 0)

� obs pump2_off : g4 → p2_running := false;
out := (0, 0)

� ctr water_req(X) : g5 → wr := X
with ¬(g1 ∨ g2 ∨ g3 ∨ g4 ∨ g5) :⇁

add(diff2, out, inout) ∧ add(diff1, inout, in)∧
d/dt(x1, diff1) ∧ d/dt(x2, diff2)

]| : in

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
42 / 64

tugraz
Institute of Software Technology

Generating a Testcase III: Product Graph
Part of the result of the conformance check
between the original and
the mutated specification.

0

1

 obs qual([x1:full/inc,x2:zero/std])

28

29

obs pump1_off

30 (pass)

obs qual([x1:empty..full/inc,x2:empty..reserve/dec])

31 (fail)

 obs pump1_off

27

obs pump2_on

32

obs pump1_off

obs pump2_on

33 (fail)

 obs pump1_off

35 (pass) 36 (fail)

34

ctr water_req(1) obs delta obs pump1_off

26

ctr water_req(1) obs pump1_off

...

 ...

2

obs qual([x1:empty..full/inc,x2:full/inc]) obs qual([x1: ...,x2: ...])

 obs pump1_on

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
43 / 64

tugraz
Institute of Software Technology

Results

Mut. No. Avg.Time Average No. =
Op. Mutants [s] States Trans.

6=
No. Perc.

ASO 10 13.9 64 117 7 3 30%
ENO 6 7.6 68 120 5 1 17%
ERO 20 12.9 62 110 20 0 0%
LRO 13 12.8 93 168 9 4 31%
MCO 16 12.8 70 126 10 6 38%
RRO 12 12.0 40 73 10 2 17%
Total 77 12.0 66 119 61 16 21%

ASO ... Association Shift Operator
ENO ... Expression Negation Operator
ERO ... Event Replacement Operator

LRO ... Logical Operator Replacement
MCO ... Missing Condition Operator
RRO ... Relational Replacement Operator

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
44 / 64

tugraz
Institute of Software Technology

Generating a Testcase IV: Linear TC
Selecting one path
for each unsafe state
leading to failure.

0

1

 obs qual([x1:full/inc,x2:zero/std])

106 (pass)

104

 obs qual([x1:empty..full/inc,x2:empty..reserve/dec])

102

 obs out_pump2_on

99

 ctr in_water_req(1)

98

 obs out_pump1_off

... (inconcl)

2

 obs qual([x1:empty..full/inc,x2:full/inc]) obs qual([x1: ...,x2: ...])

 obs out_pump1_on

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
45 / 64

tugraz
Institute of Software Technology

Generating a Testcase V: Adaptive TC

A test graph including all paths to a given unsafe state leading to failure.

01

2 3

4 5

6

7

8 9

10 11 12

13

obs out_pump1_on

obs out_pump1_off

obs out_pump1_on obs delta

ctr in_water_req(1)

obs out_pump2_on

ctr in_water_req(0)

obs out_pump2_off

obs out_pump1_off

obs out_pump1_on

obs delta obs inconc

obs out_pump1_off

obs out_pump1_on

obs delta

ctr in_water_req(1)

obs pass

Qualitative events are internal (not visible).

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
46 / 64

tugraz
Institute of Software Technology

Hybrid Systems Summary

I AI meets FM: qualitative reasoning
I Requirements → incomplete qualitative models
I Model exploration: controller (discrete) + environment (qualitative)
I TCG based on mutation testing and ioco conformance checking
I Different strategies for selecting test case

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
47 / 64

tugraz
Institute of Software Technology

Agenda

I Model-based Mutation Testing
I Real-Time Systems
I Hybrid Systems
I Discrete Systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
48 / 64

tugraz
Institute of Software Technology

Discrete Systems: MoMuT::UML

Applications:
I Car Alarm System (Ford)
I Railway Interlocking System (Thales)
I Automotive Meassurement Device: Particle Counter (AVL)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
49 / 64

tugraz
Institute of Software Technology

SUT: AVL489 Particle Counter

I One of AVL’s automotive
measurement devices

I Measures particle number
concentrations in exhaust gas

I Focus: testing of the control logic

I AVL uses virtual test-beds with
simulated devices for integration
and regression testing.

I We tested a simulation of the
particle counter:

I Matlab Simulink model
compiled to real-time
executable

I Same interface as real
device!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
50 / 64

tugraz
Institute of Software Technology

SUT: AVL489 Particle Counter

I One of AVL’s automotive
measurement devices

I Measures particle number
concentrations in exhaust gas

I Focus: testing of the control logic

I AVL uses virtual test-beds with
simulated devices for integration
and regression testing.

I We tested a simulation of the
particle counter:

I Matlab Simulink model
compiled to real-time
executable

I Same interface as real
device!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
50 / 64

tugraz
Institute of Software Technology

SUT: AVL489 Particle Counter

I One of AVL’s automotive
measurement devices

I Measures particle number
concentrations in exhaust gas

I Focus: testing of the control logic

I AVL uses virtual test-beds with
simulated devices for integration
and regression testing.

I We tested a simulation of the
particle counter:

I Matlab Simulink model
compiled to real-time
executable

I Same interface as real
device!

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
50 / 64

tugraz
Institute of Software Technology

UML Test Model of AVL489
AVL489

isReady

isBusy

Pause_0

send SPAU state /entry
send StatusBusy; set Busy /exit

Standby_1

send STBY_state /entry
send StatusBusy; set Busy /exit

Active

Purging_Pause_12

send SPUL_state /entry

Purging_Standby_12

send SPUL_state /entry

Response_14

send SEGA_state /entry

Leakage_11

send SLEC_state /entry

Integral_9

send SINT_state /entry
send StatusBusy; set Busy /exit

Measurement_2

send SMGA_state /entry
send StatusBusy; set Busy /exit

ZeroGas_10

send SNGA_state /entry
send StatusBusy; set Busy /exit

Manual

set Manual /entry

Remote

unset Manual /entry

DilutionSelection [not Manual and not Busy] / set Dilution

LeakageTest, ResponseCheck [not (oclIsInState(Standby_1)) and not Manual and not Busy] / send RejectNA

SetPurge [not (oclIsInState(Pause_0) or oclIsInState(Standby_1)) and not Manual and not Busy] / send RejectNA

SetZeroPoint [not oclIsInState(Active::Measurement_2) and not Manual and not Busy] / send RejectNA

StopIntegralMeasurement [not oclIsInState(Active::Integral_9) and not Manual and not Busy] / send RejectNA

StartMeasurement [not (oclIsInState(Standby_1) or oclIsInState(Active::Integral_9)) and not Manual and not Busy] / send RejectNA

StartIntegralMeasurement [not (oclIsInState(Active::Measurement_2) or oclIsInState(Active::Integral_9)) and not Manual and not Busy] / send RejectNA

when Busy

30 [not (oclIsInState(Active::Response_14)
 or oclIsInState(Active::Purging_Standby_12)
 or oclIsInState(Active::Leakage_11)
 or oclIsInState(Active::ZeroGas_10)
 or oclIsInState(Active::Purging_Pause_12))] / set not Busy - send StatusReady

LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StopIntegralMeasurement, SetStandby, StartMeasurement, StartIntegralMeasurement, SetPause, DilutionSelection [not Manual] / send RejectBusy

SetStandby [not Busy and not Manual]

SetPurge [not Busy and not Manual]

SetPause [not Busy and not Manual]

SetPause [not Busy and not Manual]

SetPause [not Busy and not Manual]

10

SetStandby [not Busy and not Manual]

SetPurge [not Busy and not Manual]

LeakageTest [not Busy and not Manual]

StartMeasurement [not Busy and not Manual]

ResponseCheck [not Busy and not Manual]

10

10

10

SetStandby [not Busy and not Manual]

StartIntegralMeasurement, StopIntegralMeasurement, StartMeasurement [not Busy and not Manual]
StartIntegralMeasurement [not Busy and not Manual]

SetZeroPoint [not Busy and not Manual] 10

/ send Offline

SetRemote / send Online

DilutionSelection, LeakageTest, ResponseCheck, SetPurge, SetZeroPoint, StopIntegralMeasurement, SetPause, SetStandby, StartMeasurement, StartIntegralMeasurement / send RejectOF

SetManual

SetManual / send Offline

SetRemote

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
51 / 64

tugraz
Institute of Software Technology

MoMuT::UML

I Test-case generator of AIT and TU Graz

I Implementing model-based mutation testing for UML state machines

MoMuT::UML(
(
(
(
(
(
(
(
(

!

UML2OOAS(
Java!

OOAS2AS(
Java!

Enumera3ve(TCG(
Prolog!

Symbolic(TCG(
Prolog!

SMT!Solver!
Z3!

AlarmSystem_StateMachine

Alarm
Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

UML(model(
Papyrus MDT/!

Visual Paradigm!

abstract(test(cases(
Aldebaran aut format!

Java!

frontend!
backend!

Architecture of the MoMuT::UML tool chain

AS ... Action Systems [Back83]

OOAS ... Object-Oriented Action Systems

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
52 / 64

tugraz
Institute of Software Technology

Abstract Test Case of AVL489

obs StatusReady(0)

obs SPAU_state(0)

obs Offline(0)

ctr SetStandby(0)

obs StatusBusy(0)

obs STBY_state(0)

obs Online(0)

obs StatusReady(30)

ctr StartMeasurement(0)

obs StatusBusy(0)

obs SMGA_state(0)

obs StatusReady(30)

ctr StartIntegralMeasurement(0)

obs SINT_state(0)

ctr SetStandby(0)

obs STBY_state(0)
pass

Abstract test cases → concrete C#
NUnit test cases.

ctr ... controllable event (input)

obs ... observable event (output)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
53 / 64

tugraz
Institute of Software Technology

Test Execution on Particle Counter

We found several bugs in the SUT:
I Forbidden changes of operating state while busy

I Pause → Standby
I Normal Measurement → Integral Measurement

I Ignoring high-frequent input without error-messages
I Loss of error messages in client for remote control of the device

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
54 / 64

tugraz
Institute of Software Technology

Refinement + ioco Conformance Checking
Refinement:

I state-based

I predicative semantics

Def. Refinement [Hoare & He 98]

∀s, s′ : Mutant(s, s′)⇒ Model(s, s′)

s ... state before
s’ ... state after execution

Input-Output Conformance:

I event-based

I io labelled transition systems

Def. IOCO [Tretmans 96]

∀σ ∈ traces(Model) :

out(Mutant afterσ) ⊆ out(Model afterσ)

out ... outputs labels + quiescence
after ... reachable states after trace

New combined conformance checking:

I Refinement checker searches for faulty state (fast)

I Ioco checker looks if faulty state propagates to different observations

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
55 / 64

tugraz
Institute of Software Technology

Refinement + ioco Conformance Checking
Refinement:

I state-based

I predicative semantics

Def. Refinement [Hoare & He 98]

∀s, s′ : Mutant(s, s′)⇒ Model(s, s′)

s ... state before
s’ ... state after execution

Input-Output Conformance:

I event-based

I io labelled transition systems

Def. IOCO [Tretmans 96]

∀σ ∈ traces(Model) :

out(Mutant afterσ) ⊆ out(Model afterσ)

out ... outputs labels + quiescence
after ... reachable states after trace

New combined conformance checking:

I Refinement checker searches for faulty state (fast)

I Ioco checker looks if faulty state propagates to different observations

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
55 / 64

tugraz
Institute of Software Technology

Refinement + ioco Conformance Checking
Refinement:

I state-based

I predicative semantics

Def. Refinement [Hoare & He 98]

∀s, s′ : Mutant(s, s′)⇒ Model(s, s′)

s ... state before
s’ ... state after execution

Input-Output Conformance:

I event-based

I io labelled transition systems

Def. IOCO [Tretmans 96]

∀σ ∈ traces(Model) :

out(Mutant afterσ) ⊆ out(Model afterσ)

out ... outputs labels + quiescence
after ... reachable states after trace

New combined conformance checking:

I Refinement checker searches for faulty state (fast)

I Ioco checker looks if faulty state propagates to different observations

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
55 / 64

tugraz
Institute of Software Technology

Symbolic Refinement Checking

Is non-refinement reachable?

∃ s, s ′, tr , tr ′ : reachable(s, tr) ∧ Mutant(s, s ′, tr , tr ′) ∧ ¬Model(s, s ′, tr , tr ′)

s ... state before
s’ ... states after execution
tr ... trace of labels before
tr’ ... trace of labels after execution

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
56 / 64

tugraz
Institute of Software Technology

TCG Particle Counter
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_ResponseCheck_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetManual_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetPause_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetPurge_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetStandby_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetZeroPoint_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StartIntegralMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StartMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StopIntegralMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_Integral_9_Transition_0__OldSignal_StartIntegralMeasurement_NewSignal_SetZeroPoint_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_LeakageTest_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_ResponseCheck_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetPause_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetPurge_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetStandby_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StartIntegralMeasurement_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StartMeasurement_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StopIntegralMeasurement_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Pause_0_to_Purging_Pause_12_Transition_0__OldSignal_SetPurge_NewSignal_SetStandby_sym.aut:des(09 9 8
AVL489_listless_MUTATION_signalevent__From_Pause_0_to_Standby_1_Transition_0__OldSignal_SetStandby_NewSignal_SetPurge_sym.aut:des(09 9 8
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_0__OldSignal_DilutionSelection_NewSignal_SetPurge_sym.aut:des(011 11 10
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_0__OldSignal_DilutionSelection_NewSignal_SetStandby_sym.aut:des(010 10 9
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_DilutionSelection_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetManual_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetPause_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetRemote_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetStandby_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_LeakageTest_sym.aut:des(012 12 11
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_ResponseCheck_sym.aut:des(012 12 11
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_StartMeasurement_sym.aut:des(012 12 11

928+

189+

68+
notYconformingY
(nonZref.Y&YnotYioco)Y

conformingY
(refining)Y

conformingY
(nonZref.,YbutYioco)Y

111+

817+

uniqueYTCsY

duplicateYTCsY

(a) Breakup into conforming and
not conforming model mutants.

AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_ResponseCheck_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetManual_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetPause_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetPurge_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetStandby_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_SetZeroPoint_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StartIntegralMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StartMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Manual_to_Remote_Transition_0__OldSignal_SetRemote_NewSignal_StopIntegralMeasurement_sym.aut:des(06 6 5
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_Integral_9_Transition_0__OldSignal_StartIntegralMeasurement_NewSignal_SetZeroPoint_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_LeakageTest_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_ResponseCheck_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetPause_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetPurge_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_SetStandby_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StartIntegralMeasurement_sym.aut:des(017 17 16
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StartMeasurement_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Measurement_2_to_ZeroGas_10_Transition_0__OldSignal_SetZeroPoint_NewSignal_StopIntegralMeasurement_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Pause_0_to_Purging_Pause_12_Transition_0__OldSignal_SetPurge_NewSignal_SetStandby_sym.aut:des(09 9 8
AVL489_listless_MUTATION_signalevent__From_Pause_0_to_Standby_1_Transition_0__OldSignal_SetStandby_NewSignal_SetPurge_sym.aut:des(09 9 8
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_0__OldSignal_DilutionSelection_NewSignal_SetPurge_sym.aut:des(011 11 10
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_0__OldSignal_DilutionSelection_NewSignal_SetStandby_sym.aut:des(010 10 9
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_DilutionSelection_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetManual_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetPause_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetRemote_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_2__OldSignal_SetPurge_NewSignal_SetStandby_sym.aut:des(016 16 15
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_LeakageTest_sym.aut:des(012 12 11
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_ResponseCheck_sym.aut:des(012 12 11
AVL489_listless_MUTATION_signalevent__From_Ready_to_Ready_Transition_4__OldSignal_StopIntegralMeasurement_NewSignal_StartMeasurement_sym.aut:des(012 12 11

928+

189+

68+
notYconformingY
(nonZref.Y&YnotYioco)Y

conformingY
(refining)Y

conformingY
(nonZref.,YbutYioco)Y

111+

817+

uniqueYTCsY

duplicateYTCsY

(b) Breakup into unique and
duplicate test cases.

1+ 1+ 1+ 1+

12+

1+

12+

2+ 2+

26+

10+ 9+

13+

4+

12+

4+

0Y

5Y

10Y

15Y

20Y

25Y

30Y

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 11Y 12Y 13Y 14Y 15Y 16Y

un
iq
ue

+te
st
+c
as
es
+[#

]+

length+

(c) Lengths of the unique test cases.

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
57 / 64

tugraz
Institute of Software Technology

Fault Propagation

112'

304'

38'
57'

25'
0' 1' 0' 0' 1' 0' 0'

01

501

1001

1501

2001

2501

3001

3501

11 21 31 41 51 61 71 81 91 101 111 121

m
ut
an

ts
'[#

]'

ioco'depth'

PC_AS'

452' 423'

44'
6' 3'

01

1001

2001

3001

4001

5001

11 21 31 41 51

m
ut
an

ts
'[#

]'

ioco'depth'

PC_UML'

Figure: Number of steps from fault to failure (ioco depths)

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
58 / 64

tugraz
Institute of Software Technology

Run-times

... for combined conformance checking (in min., max. depth 15+5) :

conforming conforming not conforming total(refining) (non-ref., but ioco) (non-ref. & not ioco)
mutants [#] 189 68 928 1185

ref. check

Σ 6.1 h 7.7 7.1 h 13.3 h
φ 1.9 6.8 sec 27 sec 40 sec
max 4.3 1.8 3.9 4.3

ioco check

Σ - 0.7 h 1.7 h 2.4 h
φ - 38 sec 7 sec 7.4 sec
max - 2 27 sec 2

tc constr.
Σ - - 22.9 22.9
φ - - 1.5 sec 1.2 sec
max - - 3.7 sec 3.7 sec

total
without logging

Σ 6.1 h 0.9 h 9.2 h 16.2 h
φ 1.9 0.8 0.6 0.8
max 4.3 2.2 4.1 4.3

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
59 / 64

tugraz
Institute of Software Technology

Run-times

... comparison to stand-alone ioco check (in min., max. depth 10):

not ioco ioco total
mutants [#] 719 466 1185

time – ioco check

Σ 9.8 h 22.8 h 32.6 h
φ 0.8 2.9 1.7
max 3.9 5.2 5.2

time – tc constr.
Σ 19 - 19
φ 1.6 sec - 1 sec
max 5.8 sec - 5.8 sec

total without logging

Σ 10.1 h 22.8 h 32.9 h
φ 0.8 2.9 1.7
max 3.9 5.2 5.2

appr. 16h vs. 33h

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
60 / 64

tugraz
Institute of Software Technology

Discrete Systems Summary

I Fault propagation important for test-case design
I Faster test-case generator

I find fault fast (refinement check)
I analyze if fault propagates to failure (ioco check)

I Optimized refinement check
I incremental SMT solving, state caching
I exploiting the location of mutation
I checking if existing test cases cover next fault

I Applied at AVL: many bugs found [TAP 2014]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
61 / 64

tugraz
Institute of Software Technology

Discrete Systems Summary

I Fault propagation important for test-case design
I Faster test-case generator

I find fault fast (refinement check)
I analyze if fault propagates to failure (ioco check)

I Optimized refinement check
I incremental SMT solving, state caching
I exploiting the location of mutation
I checking if existing test cases cover next fault

I Applied at AVL: many bugs found [TAP 2014]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
61 / 64

tugraz
Institute of Software Technology

Discrete Systems Summary

I Fault propagation important for test-case design
I Faster test-case generator

I find fault fast (refinement check)
I analyze if fault propagates to failure (ioco check)

I Optimized refinement check
I incremental SMT solving, state caching
I exploiting the location of mutation
I checking if existing test cases cover next fault

I Applied at AVL: many bugs found [TAP 2014]

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
61 / 64

tugraz
Institute of Software Technology

Synchronous Systems – MoMuT::REQs

Contract-based Requirement Interfaces:
I Synchronous assume-guarantee pairs
I Combined via conjunction
I Efficient SMT solving

Application: Airbag Chip (Infineon)
Inputs coin, teabutton, coffeebutton;
Outputs coffee, tea;
Internals paid;

{I} not paid and not coffee and not tea
{R1} assume coin’

guarantee paid ’
{R2} assume paid and teabutton’ and not coffeebutton ’

guarantee tea ’ and not paid ’
{R3} assume paid and coffeebutton ’ and not teabutton ’

guarantee coffee ’ and not paid ’
{R4} assume teabutton’ and coffeebutton ’

guarantee skip

Bernhard K. Aichernig, Klaus
Hörmaier, Florian Lorber, Dejan
Nickovic, Stefan Tiran. Require,
Test and Trace IT, FMICS 2015

Bernhard K. Aichernig and Dejan
Nickovic and Stefan Tiran.
Scalable Incremental Test-case
Generation from Large Behavior
Models, TAP 2015.

Bernhard K. Aichernig, Klaus
Hörmaier, Florian Lorber, Dejan
Nickovic, Rupert Schlick, Didier
Simoneau, Stefan Tiran.
Integration of Requirements
Engineering and Test-Case
Generation via OSLC, QSIC 2014

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
62 / 64

tugraz
Institute of Software Technology

Synchronous Systems – MoMuT::REQs

Contract-based Requirement Interfaces:
I Synchronous assume-guarantee pairs
I Combined via conjunction
I Efficient SMT solving

Application: Airbag Chip (Infineon)
Inputs coin, teabutton, coffeebutton;
Outputs coffee, tea;
Internals paid;

{I} not paid and not coffee and not tea
{R1} assume coin’

guarantee paid ’
{R2} assume paid and teabutton’ and not coffeebutton ’

guarantee tea ’ and not paid ’
{R3} assume paid and coffeebutton ’ and not teabutton ’

guarantee coffee ’ and not paid ’
{R4} assume teabutton’ and coffeebutton ’

guarantee skip

Bernhard K. Aichernig, Klaus
Hörmaier, Florian Lorber, Dejan
Nickovic, Stefan Tiran. Require,
Test and Trace IT, FMICS 2015

Bernhard K. Aichernig and Dejan
Nickovic and Stefan Tiran.
Scalable Incremental Test-case
Generation from Large Behavior
Models, TAP 2015.

Bernhard K. Aichernig, Klaus
Hörmaier, Florian Lorber, Dejan
Nickovic, Rupert Schlick, Didier
Simoneau, Stefan Tiran.
Integration of Requirements
Engineering and Test-Case
Generation via OSLC, QSIC 2014

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
62 / 64

tugraz
Institute of Software Technology

Summary

I Model-based Mutation Testing
I Automatically test against anticipated faults
I TCG via conformance checks

I Real-Time Systems: Timed Automata
I Hybrid Systems: Action Systems + Qualitative Reasoning
I Discrete Systems: UML
I Synchronous Systems: Assume-Guarantee Contracts
I Ongoing projects:

I DSL for easier modelling, performance testing (AVL)
I Event-B refinement checker including sets, maps (Thales)
I Dependable Internet of Things: test-based model learning

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
63 / 64

tugraz
Institute of Software Technology

Summary

I Model-based Mutation Testing
I Automatically test against anticipated faults
I TCG via conformance checks

I Real-Time Systems: Timed Automata
I Hybrid Systems: Action Systems + Qualitative Reasoning
I Discrete Systems: UML
I Synchronous Systems: Assume-Guarantee Contracts
I Ongoing projects:

I DSL for easier modelling, performance testing (AVL)
I Event-B refinement checker including sets, maps (Thales)
I Dependable Internet of Things: test-based model learning

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
63 / 64

tugraz
Institute of Software Technology

Summary

I Model-based Mutation Testing
I Automatically test against anticipated faults
I TCG via conformance checks

I Real-Time Systems: Timed Automata
I Hybrid Systems: Action Systems + Qualitative Reasoning
I Discrete Systems: UML
I Synchronous Systems: Assume-Guarantee Contracts
I Ongoing projects:

I DSL for easier modelling, performance testing (AVL)
I Event-B refinement checker including sets, maps (Thales)
I Dependable Internet of Things: test-based model learning

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
63 / 64

tugraz
Institute of Software Technology

References
Real-Time Systems

I B.K. Aichernig, F. Lorber, M. Tappler: Conformance Checking of Real-Time Models -
Symbolic Execution vs. Bounded Model Checking. Theory and Practice of Formal
Methods 2016: 15-32

I F. Lorber, A. Rosenmann, D. Nickovic, B.K. Aichernig: Bounded Determinization of
Timed Automata with Silent Transitions. FORMATS 2015: 288-304

I B.K. Aichernig, F. Lorber, D. Nickovic: Time for Mutants - Model-Based Mutation
Testing with Timed Automata. TAP 2013: 20-38

Hybrid Systems

I B.K. Aichernig, H. Brandl, E. Jöbstl, W. Krenn: Model-Based Mutation Testing of Hybrid
Systems. FMCO 2009: 228-249

I B. K. Aichernig, H. Brandl, W. Krenn: Qualitative Action Systems. ICFEM 2009: 206-225

Discrete Systems

I B.K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick, B.V. Schmidt:
Model-Based Mutation Testing of an Industrial Measurement Device. TAP 2014: 1-19

I Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jöbstl,
Harald Brandl: MoMut: : UML Model-Based Mutation Testing for UML. ICST 2015: 1-8

B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
64 / 64

